Preconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization

نویسنده

  • Xiaoyan Ma
چکیده

A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditioners which use some form of incomplete Cholesky factorization for indefinite systems. For convex optimization problems all the eigenvalues of this matrix are strictly positive. Meanwhile, we apply the new regularization techniques for symmetric indefinite systems to improve the stability of our iterative approach. Numerical results are given for a set of public domain large linearly constrained convex quadratic programming problems with sizes reaching tens of thousands of variables. The analysis of these results provides the potential advantages of our approach when applied to the solution of very large quadratic problems. Keywords-Preconditioners; Interior-Point Methods; Indefinite Systems; Quadratic Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COAP 2004 Best

In each year, the Computational Optimization and Applications (COAP) editorial board selects a paper from the preceding year’s COAP publications for the “Best Paper Award”. The recipients of the award for papers published in 2004 are Luca Bergamaschi, University of Padova, Italy, Jacek Gondzio, University of Edinburgh, Scotland, and Giovanni Zilli, University of Padova, Italy, for their paper “...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Optimization

Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless a...

متن کامل

Preconditioning indefinite systems in interior point methods for large scale linear optimisation

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

Multi-Standard Quadratic Optimization Problems

A Standard Quadratic Optimization Problem (StQP) consists of maximizing a (possibly indefinite) quadratic form over the standard simplex. Likewise, in a multi-StQP we have to maximize a (possibly indefinite) quadratic form over the cartesian product of several standard simplices (of possibly different dimensions). Two converging monotone interior point methods are established. Further, we prove...

متن کامل

Preconditioning Indefinite Systems in Interior Point Methods for Large Scale Linear Optimization

We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013